# OpenFOAM - OpenFOAMでできること - 非圧縮性流体の定常/非定常解析 <= これしたい - 圧縮性流体の定常/非定常解析 - 流体・個体伝熱解析 - 混相流(VOF) - 非圧縮性流体の定常/非定常解析を目指す ## 乱流モデル 定常(simpleFoam)と非定常(pimpleFoam)でも同じ constant/turbulencePropertiesにて、laminarかRASかLESかを選ぶ.その下に書く設定を追記する。 - simulationType - "laminar" - "RAS" - kEpsilon - RNGkEpsilon - realizableKE - kOmega - kOmegaSST - LRR (RSTM レイノルズ応力輸送モデル) - "LES" - Smagorinsky - homogeneousDynSmagorinsky - oneEqEddy - dynOneEqEddy - 乱流モデルの選択 - RASはレイノルズ平均をベースにしているので、詳細な非定常現象の再現には向かない - kEpsilonは単純で計算しやすいので、おおまかな流れのパターンを見るような用途に向いている - kEpsilon系統モデル(渦粘性モデル)は、等方性を仮定しているので、曲がりや旋回、剥離には向かない. RNG kEpsilon, Realizable kEpsilonはいくらか改善版 - RSTMは乱れの非等方性を考慮できる。しかし方程式がふえ、計算時間が3倍. - RSTMよりも制度が必要な場合はLES チュートリアル/incompressible/pimpleFoam/参照 ## 境界条件 - 境界タイプ - patch - wall - symmetryPlane - cyclic 周期境界 - cyclicAMI 不整合周期境界 - wedge 2次元軸対象境界 - empty 2次元 - ソルバーが必要とするフィールドファイル - simpleFoam - U, p, k, epsilon, nut - buoyantBoussinesqSimpleFoam - U,p,p_rgh,T,k,epsilon,nut,alphat - buoyantSimpleFoam - U,p,p_rgh,T,k,epsilon,nut,alphat ``` // // U // FoamFile { version 2.0; format ascii; class volVectorField; // volScalarField - volVectorField - volSymmTensorField object U; } // 単位 [kg m s K mol A Cd] dimensions [0 1 -1 0 0 0 0] // フィールド内部の値。0の場合は初期値 internalField uniform(0 0 0) // 境界値 boundaryField { BoudaryName // メッシュ生成時につけた名前 { type fixedValue; value uniform (1 0 0); or type zeroGradient; // 値指定の必要はない } ".*" { type zeroGradient; // 値指定の必要はない } "(inlet-1|inlet-2)" // outlet-1 or outlet-2 { type fixedValue; value uniform (1 0 0); } "outlet.*" // outlet-1, outlet-2, outletA, ... { type zeroGradient; } "nonSlipWall.*" { type fixedValue; value uniform (0 0 0); } "slipWall.*" { // 壁面スリップ条件 type slip; } } ``` その他便利な境界 ``` boundaryField { "inlet.*" { // 表面法線方向速度 (※ 法線ベクトルが外側を向いていることがあるので注意) type surfaceNormalFixedValue; refValue uniform 10; // [m/s] } "volInlet.*" { // 体積流量 type flowRateInletVelocity; volumetricFlowRate constant 2.5e-4; // [m3/s] value uniform (0 0 0); } "flowRateInlet.*" { // 質量流量 type flowRateInletVelocity; massFlowRate constant 2.5e-4; // [kg/s] rhoInlet 1; / [kg/m3] value uniform (0 0 0); } "turbulenceInlet.*" { // 乱れ付き速度境界 type turbulentInlet; referenceField uniform (10 0 0); // 流速[m/s] fluctuationScale (0.02 0.01 0.01); // 変動スケール } } ``` ## OpenFOAMにおける計算手順 (重要) - ヴァージョン - v5.0 (2018-02-28 時点) - メッシング (商用メッシャーある? YES?NO?) - (YES) - fluentMeshToFoam - ideasUnvToFoam... - あったらやってない - (NO) <= これ - blockMesh - CAD + snappyHexMesh <= おそらくこれしたい - SALOME - ソルバーの選択 - 非圧縮性ソルバー - 定常 : simpleFoam <= これしかない - 非定常 : pimpleFoam <= これしかない s こんだけ。非圧縮性ソルバーはそんなにない - ケースの設定 - 0 <= フィールド変数 - U - epsilon - k - nuTilda - nut - p - constant - polyMesh - blockMeshDict - turbulenceProperties <= 定常/乱流モデルの設定 - (RASProperties) <= 非定常/乱流モデルの設定 RANS - (LESProperties) <= 非定常/乱流モデルの設定 LES - system - controlDict <= 計算の制御の設定 (時間幅、終了時刻等..) - fvSchemes <= 離散化スキームの設定 - fvSolutions <= 代数方程式ソルバーの設定、SIMPLE(PISO)等の設定を含むファイル ## まずは2つのチュートリアルで概要を把握する ### バックステップ流れ pitzDaily [simpleFoam:非圧縮製定常乱流ソルバー] - [説明資料 - スライド](http://www.mech.iwate-u.ac.jp/~hirose/ockitatohoku/ref/wakashimasensei-text-3-1.pdf) ``` mkdir -p $FOAM_RUN // runディレクトリを作っておく。(もしないなら) run // = cd $FOAM_RUN (便利) cp -r $FOAM_TUTORIAL/incompressible/simpleFoam/pitzDaily . cd PitzDaily blockMesh simpleFoam paraFoam ``` - 気づき - コピーした時点ではconstantディレクトリにはメッシュ情報はなにもない. blockMesh実行後に、constant/polyMeshディレクトリが作成され、配下に、boundary,faces,neighbour, owner, pointsが生成されている. ### ミキシングエルボー その1 (定常計算) - [ミキシングエルボーの熱流動解析チュートリアルのケースファイル ダウンロード | 森北出版株式会社](http://www.morikita.co.jp/exclusive/download/1522) ``` cd steadyIsoThermal blockMesh surfaceFeaturExtract snappyHexMesh -overwrite createPatch -overwrite (v.4以降は不要) paraFoam (メッシュの確認) foamJob simpleFoam (バックグラウンド実行) tail -f log (ログ確認. "End"が計算終了合図) ``` ログの確認 ``` foamLog log //logsディレクトリができる gnuplot residual.gp evince residual.eps ``` - triSurface/mixing_elbow.stlが設置されている - blockMeshを実行すると、メッシュが切られた直方体が作られた。 - surfaceFeatureExtractで特徴線を抽出 - つまり、stlの外形線をパスとしてだしている。constant/extendedFeatureEdgeMeshの下に保存されている - snappyHexMeshを実行すると、polyMeshの中身も増えた。また、triSurface/mixing_elbow.eMeshができた! - snappyHexMeshを実行すると、ミキシングエルボ内部のメッシュが切れた。外側はどうするのか?設定? - foamLog logでlogsディレクトリに計算ログが出力 - 残差logのグラフを見たいがアプリが無く失敗。epsもイラレでみたが白紙. ### ミキシングエルボー その2 (非定常熱計算) ``` cd constant rm -rf polyMesh ln -s ../../steadyIsothermal/constant/polyMesh ``` - メッシュは重たいので、steadyIsoThermalのconstat/polyMeshにリンクを張ることで再利用 - (分かったこと) : constant/triSurfaceは中間データだった.計算に利用しているのはpolyMeshの可能性がある ``` foamJob buoyantPimpleFoam // 並列の場合 decomposePar // 並列用に領域分割する foamJob -p buoyantPimpleFoam // -pで並列実行 reconstructPar // 領域結合 tail -f log //途中経過確認 paraFoam ``` ## メッシュ生成 - ツール - 形状生成 : FreeCAD - メッシング : snappyHexMesh, blockMesh, Netgen - 形状生成 + メッシング : salome ## SnappyHexMesh サンプルコード : OpenFOAM-5.x\applications\utilities\mesh\generation\snappyHexMesh - 以下のファイルが必要 - system/snappyHexMeshDict - system/meshQualityDict ``` // どこのメッシュを残すかの場所を指定する locationInMesh (0 0 0); ``` ``` // メッシュの初期化 foamCleanPolyMesh ``` メッシュはきれいになる ``` // 不要な境界の除去 createPatch -overwrite ``` ## OpenFOAMによる熱流体解析 ## Q&A - Q: チュートリアルからコピーするだけでいいの?設定はどこまで変えていいの? - Q: FoamFileのヘッダのヴァージョンは適当? ## 参考 - [OpenFOAM® - Official ](https://www.openfoam.com/) - [penguinFoam - GUIツール](http://www.geocities.jp/penguinitis2002/study/OpenFOAM/penguinFoam/penguinFoam-20170909.pdf) - [OpenFOAMによる熱移動と流れの数値解析 | 森北出版株式会社](http://www.morikita.co.jp/books/book/2779) - [正誤表 | 森北出版株式会社](http://www.morikita.co.jp/exclusive/download/1601) ## ParaViewで格子の表示 ``` # vtk DataFile Version 2.0 grid.vtk ASCII DATASET POLYDATA POINTS 8 float 3.2 1.5 1.2 3.7 1.5 1.2 3.7 1.5 1.2 3.2 1.5 1.2 3.2 2.1 1.2 3.7 2.1 1.2 3.7 2.1 1.2 3.2 2.1 1.2 POLYGONS 2 10 4 0 1 2 3 4 4 5 6 7 ``` ## paraFoamでblockMeshの確認 ``` blockMesh paraFoam -block ``` ``` /*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 5 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 1; // 二次元はXY平面(X1,X2) // ^ x2(y) // | // |__ x1(x) // / // x3(z) // 4____ 5 // /| /| // /_0__/ |1 //7| |6/ // |____|/ // 3 2 // __ 1 // /| // _2/ |0 ==> 外向きに右ねじの法則 // __|/ // 3 // minx -0.15; maxx 0.50; miny -0.05; //高さ方向 maxy 0.20; //高さ方向 minz -0.15; maxz 0.15; nx 60; ny 30; nz 30; vertices ( ($minx $miny $minz) // 0 ($maxx $miny $minz) // 1 ($maxx $maxy $minz) // 2 ($minx $maxy $minz) // 3 ($minx $miny $maxz) // 4 ($maxx $miny $maxz) // 5 ($maxx $maxy $maxz) // 6 ($minx $maxy $maxz) // 7 ); blocks ( hex (0 1 2 3 4 5 6 7) ($nx $ny $nz) simpleGrading (1 1 1) ); edges ( ); // -*- Boundary Type -*- // patch パッチ (入/出境界) // wall 壁 // symmetryPlane 対称面 // cyclic 周期境界 // cyclicAMI 不適合境界 // wedge 2次元軸対象 // empty 2次元問題 boundary ( upperWall { type wall; faces ( (3 7 6 2) ); // カンマ必須 } lowerWall { type wall; faces ( (1 5 4 0) ); } inlet { type patch; faces ( (0 4 7 3) ); } outlet { type patch; faces ( (2 6 5 1) ); } frontAndBack { type wall; faces ( (4 5 6 7) (0 3 2 1) ); } ); // mergePatchPairs // {}; // ************************************************************************* // ``` 変数宣言 ``` minx -0.00101; maxx 0.05101; miny -0.00601; maxy 0.05601; minz -0.01001; maxz 0.05601; nx 52; ny 32; nz 56; vertices ( ($minx $miny $minz) ($maxx $miny $minz) ($maxx $maxy $minz) ($minx $maxy $minz) ($minx $miny $maxz) ($maxx $miny $maxz) ($maxx $maxy $maxz) ($minx $maxy $maxz) ); blocks ( hex (0 1 2 3 4 5 6 7) ($nx $ny $nz) simpleGrading (1 1 1) ); ``` # snappyHexMeshDict ``` /*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 5 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers false; //Optional: single region surfaces get patch names according to // surface only. Multi-region surfaces get patch name // surface "_ "region. Default is true //singleRegionName false; //Optional: preserve all generated patches. Default is to remove // zero-sized patches. //keepPatches true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { box1x1x1 { type searchableBox; min (1.5 1 -0.5); max (3.5 2 0.5); } sphere { type triSurfaceMesh; file "sphere.stl" //tolerance 1E-5; // optional:non-default tolerance on intersections //maxTreeDepth 10; // optional:depth of octree. Decrease only in case // of memory limitations. // Per region the patchname. If not provided will be _. // Note: this name cannot be used to identity this region in any // other part of this dictionary; it is only a name // for the combination of surface+region (which is only used // when creating patches) regions { secondSolid { name mySecondPatch; } } } sphere2 { type searchableSphere; centre (1.5 1.5 1.5); radius 1.03; } }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 2000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 0; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 1; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by explicitly provided // edges. // This is a featureEdgeMesh, read from constant/triSurface for now. // Specify 'levels' in the same way as the 'distance' mode in the // refinementRegions (see below). The old specification // level 2; // is equivalent to // levels ((0 2)); features ( //{ // file "someLine.eMesh"; // //level 2; // levels ((0.0 2) (1.0 3)); //} ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { sphere { // Surface-wise min and max refinement level level (2 2); // Optional region-wise level specification regions { secondSolid { level (3 3); } } // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. patchInfo { type patch; inGroups (meshedPatches); } //- Optional increment (on top of max level) in small gaps //gapLevelIncrement 2; //- Optional angle to detect small-large cell situation // perpendicular to the surface. Is the angle of face w.r.t. // the local surface normal. Use on flat(ish) surfaces only. // Otherwise leave out or set to negative number. //perpendicularAngle 10; //- Optional faceZone and (for closed surface) cellZone with // how to select the cells that are in the cellZone // (inside / outside / specified insidePoint) // The orientation of the faceZone is // - if on cellZone(s) : point out of (maximum) cellZone // - if freestanding : oriented according to surface //faceZone sphere; //cellZone sphere; //cellZoneInside inside; //outside/insidePoint //- Optional specification of what to do with faceZone faces: // internal : keep them as internal faces (default) // baffle : create baffles from them. This gives more // freedom in mesh motion // boundary : create free-standing boundary faces (baffles // but without the shared points) //faceType baffle; } } // Feature angle: // - used if min and max refinement level of a surface differ // - used if feature snapping (see snapControls below) is used resolveFeatureAngle 30; //- Optional increment (on top of max level) in small gaps //gapLevelIncrement 2; // Planar angle: // - used to determine if surface normals // are roughly the same or opposite. Used // - in proximity refinement // - to decide when to merge free-standing baffles // (if e.g. running in surfaceSimplify mode set this to 180 to // merge all baffles) // - in snapping to avoid snapping to nearest on 'wrong' side // of thin gap // // If not specified same as resolveFeatureAngle planarAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // increasing order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { box1x1x1 { mode inside; levels ((1.0 4)); } //sphere //{ // mode distance; // levels ((1.0 5) (2.0 3)); //} } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (5 0.28 0.43); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; // Optional: do not remove cells likely to give snapping problems // handleSnapProblems false; // Optional: switch off topological test for cells to-be-squashed // and use geometric test instead //useTopologicalSnapDetection false; } // Settings for the snapping. snapControls { // Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; // Maximum relative distance for points to be attracted by surface. // True distance is this factor times local maximum edge length. // Note: changed(corrected) w.r.t 17x! (17x used 2* tolerance) tolerance 2.0; // Number of mesh displacement relaxation iterations. nSolveIter 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping // Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; // Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; // Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; // Detect features between multiple surfaces // (only for explicitFeatureSnap, default = false) multiRegionFeatureSnap false; // wip: disable snapping to opposite near surfaces (revert to 22x behaviour) // detectNearSurfacesSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Layer thickness specification. This can be specified in one of following // ways: // - expansionRatio and finalLayerThickness (cell nearest internal mesh) // - expansionRatio and firstLayerThickness (cell on surface) // - overall thickness and firstLayerThickness // - overall thickness and finalLayerThickness // - overall thickness and expansionRatio // // Note: the mode thus selected is global, i.e. one cannot override the // mode on a per-patch basis (only the values can be overridden) // Expansion factor for layer mesh expansionRatio 1.0; // Wanted thickness of the layer furthest away from the wall. // If relativeSizes this is relative to undistorted size of cell // outside layer. finalLayerThickness 0.3; // Wanted thickness of the layer next to the wall. // If relativeSizes this is relative to undistorted size of cell // outside layer. //firstLayerThickness 0.3; // Wanted overall thickness of layers. // If relativeSizes this is relative to undistorted size of cell // outside layer. //thickness 0.5 // Minimum overall thickness of total layers. If for any reason layer // cannot be above minThickness do not add layer. // If relativeSizes this is relative to undistorted size of cell // outside layer.. minThickness 0.25; // Per final patch (so not geometry!) the layer information // Note: This behaviour changed after 21x. Any non-mentioned patches // now slide unless: // - nSurfaceLayers is explicitly mentioned to be 0. // - angle to nearest surface < slipFeatureAngle (see below) layers { sphere_firstSolid { nSurfaceLayers 1; } maxY { nSurfaceLayers 1; // Per patch layer data expansionRatio 1.3; finalLayerThickness 0.3; minThickness 0.1; } // Disable any mesh shrinking and layer addition on any point of // a patch by setting nSurfaceLayers to 0 frozenPatches { nSurfaceLayers 0; } } // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // Static analysis of starting mesh // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 130; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Patch displacement // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Smooth layer thickness over surface patches nSmoothThickness 10; // Medial axis analysis // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 // in 17x. minMedialAxisAngle 90; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Optional: limit the number of steps walking away from the surface. // Default is unlimited. //nMedialAxisIter 10; // Optional: smooth displacement after medial axis determination. // default is 0. //nSmoothDisplacement 90; // (wip)Optional: do not extrude a point if none of the surrounding points is // not extruded. Default is false. //detectExtrusionIsland true; // Mesh shrinking // Optional: at non-patched sides allow mesh to slip if extrusion // direction makes angle larger than slipFeatureAngle. Default is // 0.5*featureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will // exit if it reaches this number of iterations; possibly with an // illegal mesh. nLayerIter 50; // Max number of iterations after which relaxed meshQuality controls // get used. Up to nRelaxedIter it uses the settings in // meshQualityControls, // after nRelaxedIter it uses the values in // meshQualityControls::relaxed. nRelaxedIter 20; // Additional reporting: if there are just a few faces where there // are mesh errors (after adding the layers) print their face centres. // This helps in tracking down problematic mesh areas. //additionalReporting true; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { // Specify mesh quality constraints in separate dictionary so can // be reused (e.g. checkMesh -meshQuality) #include "meshQualityDict" // Optional : some meshing phases allow usage of relaxed rules. // See e.g. addLayersControls::nRelaxedIter. relaxed { // Maximum non-orthogonality allowed. Set to 180 to disable. maxNonOrtho 75; } // Advanced // Number of error distribution iterations nSmoothScale 4; // amount to scale back displacement at error points errorReduction 0.75; } // Advanced //// Debug flags //debugFlags //( // mesh // write intermediate meshes // intersections // write current mesh intersections as .obj files // featureSeeds // write information about explicit feature edge // // refinement // attraction // write attraction as .obj files // layerInfo // write information about layers //); // //// Write flags //writeFlags //( // scalarLevels // write volScalarField with cellLevel for postprocessing // layerSets // write cellSets, faceSets of faces in layer // layerFields // write volScalarField for layer coverage //); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // ``` # meshQualityDict ``` /*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 5 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object meshQualityDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Include defaults parameters from master dictionary #include "$WM_PROJECT_DIR/etc/caseDicts/meshQualityDict" // ************************************************************************* // ```