FrontPage/Python

アプリのデータ永続化のためにSQLite3を使う

ndarrayの格納方法

データ解析ではndarrayで多次元配列を操作するのがほとんど.毎回呼び出していると時間がかかるのでDBに突っ込みたい.

You could register a new array data type with sqlite3:   import sqlite3 import numpy as np import io    def adapt_array(arr):

   """
   http://stackoverflow.com/a/31312102/190597 (SoulNibbler)
   """
   out = io.BytesIO()
   np.save(out, arr)
   out.seek(0)
   return sqlite3.Binary(out.read())

  def convert_array(text):

   out = io.BytesIO(text)
   out.seek(0)
   return np.load(out)

   

# Converts np.array to TEXT when inserting sqlite3.register_adapter(np.ndarray, adapt_array)  

# Converts TEXT to np.array when selecting sqlite3.register_converter("array", convert_array)   x = np.arange(12).reshape(2,6)   con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) cur = con.cursor() cur.execute("create table test (arr array)") With this setup, you can simply insert the NumPy? array with no change in syntax:   cur.execute("insert into test (arr) values (?)", (x, )) And retrieve the array directly from sqlite as a NumPy? array:   cur.execute("select arr from test") data = cur.fetchone()[0]   print(data)

# [[ 0 1 2 3 4 5]

# [ 6 7 8 9 10 11]] print(type(data))

# <type 'numpy.ndarray'>

トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS