アップデートの際にはまったので備忘録を残します。numpyをアップデートしようとした際にMingw32Compilerのなんちゃらでエラーが発生。
pip install numpy -U
アンインストール後、再度インストールしようとしてもエラー。
pip install numpy
そこで, こちらからnumpy‑1.9.3+mkl‑cp27‑none‑win_amd64.whlをダウンロード。適当なフォルダにおいて、'shift+右クリック'>'コマンドラインでひらく'をして,
pip install 'numpy-1.9.3*****.whl'
.whlからインストールすると一発で上手くいった。良かった。。。
def debuglog(name='', data=[]): with open('log.csv', 'a') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow(name) writer.writerow(data)
from datetime import date import csv def debuglog(s=None, data=None): d = date.today().isoformat() with open('log.csv', 'a') as f: writer = csv.writer(f, lineterminator='\n') if not s is None: writer.writerow([d , s]) if not data is None: writer.writerow([d, data]) print s, data
http://hydrocul.github.io/wiki/numpy/ndarray-io.html
ndarr1 = np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) np.save('test.npy', ndarr1) ndarr2 = np.load('test.npy')
np.savez を使うと複数のndarrayを名前付きで、しかも圧縮してファイルに保存できる。保存したファイルを読み込むには上と同じく np.load を使う。 np.load はファイルの保存形式を拡張子で判断しているようで、 np.savez での保存形式の場合は拡張子は .npz を使う。
ndarr1 = np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]) ndarr2 = np.array([10, 20, 30]) np.savez('test.npz', x=ndarr1, y=ndarr2) ndarr3 = np.load('test.npz') print(ndarr3['x']) # 出力結果 # [ 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ] print(ndarr3['y']) # 出力結果 # [10 20 30]
2次元ndarryをテキスト形式で保存・読み込み. 区切り文字は空白がデフォルトなのでcsvにするためにはdelimiterオプションを利用
ndarr1 = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) np.savetxt('test.csv', ndarr1, delimiter=',') ndarr2 = np.loadtxt('test.csv', delimiter=',') print(ndarr2) # 出力結果 # [[ 1. 2. 3.] # [ 4. 5. 6.] # [ 7. 8. 9.]]
人工信号に対して、FFT、STFT解析を行うサンプルコード
返り値のdataはnumpy.array()
# オーディオのロード from scipy.io.wavfile import read fs, data = read(filename) data = data[0:fs/2-1]
ary = np.array([1,2,3,4,5]) = np.array( (1,2,3,4,5)) # ゼロベクトル ary = np.zeros(3) # 1次元の場合はスカラーでよい ary = np.zeros((3, 2)) # N次元の場合はタプルを忘れずに # 空配列 ary = np.empty((Nx,Ny)) ary = np.empty_like(ary0) # 1ベクトル ary = np.ones((Nx,Ny)) ary = np.ones_like(ary0) # 単位行列 ary = identity(N) #NxNの単位行列が生成される
ary = np.array([1,2,3]) # データタイプ(np.bool, np.int, np.float, np.complex... np.int32, np.float64...) ary.dtype # タイプの変更 ary = ary.astype(np.float) # 配列サイズ ary = np.empty((3,5,2), dtype = np.float) ary.shape >> (3,5,2) # 配列次元 ary = np.empty((3,5,2), dtype = np.float) ary.ndim >> 3 # 要素数 ary = np.empty((3,5,2), dtype = np.float) ary.size >> 30
dtype_range = {np.bool_: (False, True), np.bool8: (False, True), np.uint8: (0, 255), np.uint16: (0, 65535), np.int8: (-128, 127), np.int16: (-32768, 32767), np.int64: (-2**63, 2**63 - 1), np.uint64: (0, 2**64 - 1), np.int32: (-2**31, 2**31 - 1), np.uint32: (0, 2**32 - 1), np.float32: (-1, 1), np.float64: (-1, 1)}
pythonでオーディオを再生するにはpyaudioがよさそう。pyaudioに再生させるためには、バイナリに戻す必要がある。
>>> a = np.array([[2], [7], [23]], dtype=np.uint8) >>> a array([[ 2], [ 7], [23]], dtype=uint8) >>> b = np.unpackbits(a, axis=1) >>> b array([[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
→Speed up loading 24-bit binary data into 16-bit numpy array
output = np.frombuffer(data,'b').reshape(-1,3)[:,1:].flatten().view('i2')
path = './audio/sin_44100_24bit_stereo_5s.wav' print sndhdr.what(path) >>> ('wav', 44100, 2, -1, 24) print sndhdr.whathdr(path) >>>('wav', 44100, 2, -1, 24)
import sndhdr, wave, struct if sndhdr.what(fname)[0] != 'wav' raise StandardError("file doesn't have wav header") try: wav = wave.open(fname) params = (nchannels,sampwidth,rate,nframes,comp,compname) = wav.getparams() frames = wav.readframes(nframes*nchannels) finally: wav.close() out = struct.unpack_from ("%dh" % nframes*nchannels, frames)
X = np.arange(12).reshape((3,4)) >> array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) // 平均ベクトル m = np.mean(X, axis=0) >> array([ 4., 5., 6., 7.]) // X-m そのまま各行ごとに演算できる >> array([ [-4., -4., -4., -4.], [ 0., 0., 0., 0.], [ 4., 4., 4., 4.]]) //標準偏差 s = np.std(X, axis=0) >> array([ [-0.3381028 , -1.20939778, 0.5124003 , 1.35738762], [-2.12531859, 0.60120223, 1.75273089, 0.4617148 ], [-0.14482128, -0.73401208, 0.63781457, -0.33835372]]) // 標準化 // (X-m)/s >> array([ [-1.22474487, -1.22474487, -1.22474487, -1.22474487], [ 0. , 0. , 0. , 0. ], [ 1.22474487, 1.22474487, 1.22474487, 1.22474487]])
なんて便利なんだ。
ポイントはm = np.mean(X, axis=1)[:, np.newaxis] np.newaxisは軸を追加する。これによりnumpyが自動で軸ごとに演算してくれる。ブロードキャストというらしい。
X=np.arange(12).reshape(3,4) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] m = np.mean(X, axis=1) [ 1.5 5.5 9.5] m.T[:,np.newaxis] [[ 1.5] [ 5.5] [ 9.5]] X-m [[-1.5 -0.5 0.5 1.5] [-1.5 -0.5 0.5 1.5] [-1.5 -0.5 0.5 1.5]]