開始行:
[[FrontPage/Python]]
アプリのデータ永続化のためにSQLite3を使う
** 超分かりやすい python + SQLite [#pcf6c22b]
http://www.gesource.jp/programming/python/code/0013.html
** ndarrayの格納方法 [#ca61ac23]
データ解析ではndarrayで多次元配列を操作するのがほとんど....
- 方法1
-- http://stackoverflow.com/questions/18621513/python-ins...
** pandasでSQLiteを使う [#ff88333e]
http://www.mwsoft.jp/programming/numpy/rdb_to_pandas.html
** pandasでRDBの読み書きをする [#p2a1c03e]
http://www.mwsoft.jp/programming/numpy/rdb_to_pandas.html
def create_db():
# PandasのDataFrameを生成
df = loadDataFrame(WAVDIR_ABSPATH)
# PandasのDataFrameをSQLiteに保存
with sqlite3.connect('ExpData2.db') as conn:
# conn.execute("DROP TABLE IF EXISTS tbl_golf")
psql.to_sql(df, 'tbl_golf', con=conn, index=True,...
cur = conn.execute('SELECT * FROM tbl_golf')
print cur.fetchall()
def load_db():
# dbからデータを呼び出しpandasへ保存
with sqlite3.connect('ExpData2.db') as conn:
sql = "SELECT * FROM tbl_golf"
df = psql.read_sql(sql,conn)
print df
** Pickle [#l839a0e1]
http://blog.amedama.jp/entry/2015/12/05/132520
# -*- coding: utf-8 -*-
import pickle
class Sample(object):
def __init__(self, filename):
"""非 Pickle 化されるときは呼ばれない"""
# 文字列は Pickle 化できる
self.filename = filename
# ファイルオブジェクトは Pickle 化できない
self.file = open(filename, mode='rb')
def __getstate__(self):
"""Pickle 化されるとき呼ばれる"""
# オブジェクトの持つ属性をコピーする
state = self.__dict__.copy()
# Pickle 化できない属性を除去する
del state['file']
# Pickle 化する属性を返す
return state
def __setstate__(self, state):
"""非 Pickle 化されるとき呼ばれる"""
# オブジェクトの持つ属性を復元する
self.__dict__.update(state)
# Pickle 化できなかった属性を作りなおす
self.file = open(self.filename, mode='rb')
def main():
obj = Sample('/dev/null')
binary = pickle.dumps(obj)
restored_obj = pickle.loads(binary)
print(restored_obj.filename)
print(restored_obj.file)
if __name__ == '__main__':
main()
** Pickle + SQLite 任意のPythonオブジェクトをSQLite Blob...
import sqlite3
import pickle
class Abcdefg(object):
def __init__(self):
self.a=10
def play(self):
print self.a
a = Abcdefg()
pdata = pickle.dumps(a, protocol=1)
sqlite3.register_converter("pickle", pickle.loads)
con = sqlite3.connect(":memory:", detect_types=sqlite3.P...
cur = con.cursor()
cur.execute("create table test (arr pickle)")
cur.execute("insert into test (arr) values (?)", (sqlite...
cur.execute("select arr from test")
data = cur.fetchone()[0]
data.play()
終了行:
[[FrontPage/Python]]
アプリのデータ永続化のためにSQLite3を使う
** 超分かりやすい python + SQLite [#pcf6c22b]
http://www.gesource.jp/programming/python/code/0013.html
** ndarrayの格納方法 [#ca61ac23]
データ解析ではndarrayで多次元配列を操作するのがほとんど....
- 方法1
-- http://stackoverflow.com/questions/18621513/python-ins...
** pandasでSQLiteを使う [#ff88333e]
http://www.mwsoft.jp/programming/numpy/rdb_to_pandas.html
** pandasでRDBの読み書きをする [#p2a1c03e]
http://www.mwsoft.jp/programming/numpy/rdb_to_pandas.html
def create_db():
# PandasのDataFrameを生成
df = loadDataFrame(WAVDIR_ABSPATH)
# PandasのDataFrameをSQLiteに保存
with sqlite3.connect('ExpData2.db') as conn:
# conn.execute("DROP TABLE IF EXISTS tbl_golf")
psql.to_sql(df, 'tbl_golf', con=conn, index=True,...
cur = conn.execute('SELECT * FROM tbl_golf')
print cur.fetchall()
def load_db():
# dbからデータを呼び出しpandasへ保存
with sqlite3.connect('ExpData2.db') as conn:
sql = "SELECT * FROM tbl_golf"
df = psql.read_sql(sql,conn)
print df
** Pickle [#l839a0e1]
http://blog.amedama.jp/entry/2015/12/05/132520
# -*- coding: utf-8 -*-
import pickle
class Sample(object):
def __init__(self, filename):
"""非 Pickle 化されるときは呼ばれない"""
# 文字列は Pickle 化できる
self.filename = filename
# ファイルオブジェクトは Pickle 化できない
self.file = open(filename, mode='rb')
def __getstate__(self):
"""Pickle 化されるとき呼ばれる"""
# オブジェクトの持つ属性をコピーする
state = self.__dict__.copy()
# Pickle 化できない属性を除去する
del state['file']
# Pickle 化する属性を返す
return state
def __setstate__(self, state):
"""非 Pickle 化されるとき呼ばれる"""
# オブジェクトの持つ属性を復元する
self.__dict__.update(state)
# Pickle 化できなかった属性を作りなおす
self.file = open(self.filename, mode='rb')
def main():
obj = Sample('/dev/null')
binary = pickle.dumps(obj)
restored_obj = pickle.loads(binary)
print(restored_obj.filename)
print(restored_obj.file)
if __name__ == '__main__':
main()
** Pickle + SQLite 任意のPythonオブジェクトをSQLite Blob...
import sqlite3
import pickle
class Abcdefg(object):
def __init__(self):
self.a=10
def play(self):
print self.a
a = Abcdefg()
pdata = pickle.dumps(a, protocol=1)
sqlite3.register_converter("pickle", pickle.loads)
con = sqlite3.connect(":memory:", detect_types=sqlite3.P...
cur = con.cursor()
cur.execute("create table test (arr pickle)")
cur.execute("insert into test (arr) values (?)", (sqlite...
cur.execute("select arr from test")
data = cur.fetchone()[0]
data.play()
ページ名: